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Computer Simulation of Fluids Using 
Axisymmetric Molecules I 

S. Gupta, 2 W. B. Sediawan, 2 C. P. Williams, 2'3 and E. McLaughlin 2 

Molecular dynamics simulations have been performed using the Gaussian 
overlap potential in order to develop and test thermodynamic property predic- 
tive methods and to investigate the possibility of modeling real fluids as well. A 
first-order anisotropic reference-based perturbation theory and a temperature- 
dependent sphericalized potential have been tested and these methods are 
shown to work well, qualitatively for the original Gaussian overlap potential 
and qualitatively as well as quantitatively for the modified Gaussian overlap 
potential. It is also shown that the modified Gaussian overlap potential with the 
quadrupole moment works well for modeling benzene. Future possibilities are 
also discussed. 
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1. I N T R O D U C T I O N  

Site site interaction models, in which the interaction sites are usually 
modeled as spheres, have been popular in the modeling of fluids of non- 
spherical models. However, such models can become not only com- 
putationally difficult [1, 2] but also less convenient for theoretical develop- 
ments for the case of complex molecules requiring several sites [3]. An 
alternative is to use pseudoatomic models [1], of which the Gaussian 
overlap potential I-4, 5] is of particular interest. Through this model, both 
prolate and oblate shapes of molecules can be represented as axially sym- 
metric molecules [3]. This allows possible alternatives to the use of the 
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spherical site-site interactions not only for molecules such as N2 and 02,  
which are traditionally modeled as linear molecules, but also for molecules 
with cyclic and aromatic rings. Further, this model can be combined with 
the site-site model to represent even more complex molecules such as 
naphthalene and ethylbenzene [4]. 

In the past, the Gaussian overlap potential has been used in 
simulations involving liquid crystal studies [6],  development of a non- 
spherical reference-based perturbation theory [2],  and studies of liquid 
structure as well as comparisons with the experimental data [7, 8]. All 
these papers clearly indicate the need for more systematic simulation 
studies and this paper summarizes our recent simulation results [9-11]  
using the Gaussian overlap potential. 

2. POTENTIAL M O D E L  D E V E L O P M E N T  

For a pair of molecules, with orientations co 1 and ~o 2 with respect to 
vector r along the molecular centers of mass, the original Gaussian overlap 
pair potential of Berne and Pechukas [4]  is given by 

~ 
with 

s ( D 2 ) :  ~30[ 1 ,  Z2(Vl. V2)2] 1/2 (2) 

and 

[ Z ( ( - v l + r . v 2 )  2 r  -~ ( r .v l - - r .v2)2 '~]  -a/2 
O'(C01 C02) ~--- O" o (3) 

Here v~ and v2 are the unit vectors along the symmetry axes of these 
molecules, Go and cr o are the potential parameters, and ;~ is the anisotropy 
parameter given by 

Z = (/c2 - 1 )/(/c 2 + 1 ) (4) 

where ~ is the length-to-breadth ratio of these molecules such that ~ > 1 for 
prolate molecules and rc < 1 for oblate molecules. Equations (1)-(4) define 
the pair potential between two identical axially symmetric molecules whose 
shapes are closely ellipsoidal [3].  Kabadi and Steele [7]  recognized that 
the orientation dependence of e(o91co2) as given by Eq. (2) is weak and 
simply used 

e(co~co~) = ~o (5) 
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This potential, Eqs. (1), (3), and (5), is referred to as the GOCE potential 
and produces results for thermodynamic properties [9] close to those of 
the original potential of Berne and Pechukas [4]. This model provides for 
a strong angle dependence of the width of the attractive well and this, 
besides a constant e, is the main deficiency of this model compared with the 
site-site potentials. 

Gay and Berne [5] have attempted to improve the Gaussian overlap 
potential by modifying Eqs. (1) and (3). We use a simplified version of 
their potential where the r dependence is given by )6] 

r -  a((01(02) + d - r _  a((01(01) + dw (6) 

The above form of potential leads to a nearly constant well width which is 
further controlled by a parameter dw, introduced by Kabadi [8], such that 
dw = 1 for prolate and ~ x  for oblate molecules. The equation for a((01(02) 
is still given by Eq. (3) and this has recently been shown to be a reasonable 
representation of the ellipsoids of revolution [3]. The orientation depen- 
dence of e((01(02) has been modified according to 

/?'((01 (02) = eo[ 1 -- Z2(vl " v2) 2 ] 1/2/[~ c~ 2 (7) 

We refer to this model, Eqs. (3), (6), and (7), as the GOBG potential. This 
model compares well with the equivalent s i t ,s i te  models and only some 
minor problems remain [5, 11]. 

Both the GOCE and the GOBG models discussed here are suitable for 
calculations of thermophysical properties through molecular dynamics and 
Monte Carlo simulations. Not only is the evaluation of the potential 
energy straightforward, for known r, Vl, and v2, but also analytical 
expressions for force and torque can be obtained through simple 
mathematical manipulations [12]. We have performed NVT molecular 
dynamics simulations using systems of 256 molecules for the results 
discussed in the next section. More details can be found elsewhere [%11 ]. 

3. SIMULATION AND THEORY 

The thermodynamic perturbation theory of Fischer [13], originally 
developed for site-site models, has been easily adapted for the Gaussian 
overlap potential. The full intermolecular pair potential is divided into two 
parts: a "repulsive" reference part, Uo(r(01(02), and an "attractive" pertur- 
bation part, U1(rm~(02), according to Mo and Gubbins [14] 

Uo(r(01 (02) = U(r(01 (-02) - -  Umin((01 (02), 

= 0, 

r < rmin((01 (02) 
(8) 

r > rmin((D1092) 
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and 

Ul(rO.)l (D2)-- Umin((D1 (.02), 

----- U(ro) 1 (D2) , 

r < rmin(fOl fO2) 
(9) 

r > rmin(COt C02) 

where rmi n is the r location of the attractive minimum of the full pair 
potential, U(ro)l~02), for a given 0)1 and 0)2, and Umin(O)~O)2) is the value of 
the potential at this minimum. 

The perturbation expansion of Zwanzig can then be applied to obtain 
the residual Helmholtz free energy [ 1 ] 

A = Ao + AI + ... (10) 

where A 0 is the residual Helmholtz free energy of the reference fluid and is 
taken to be that of a hard ellipsoid (HE) having the same ~c, with the size 
given by the numerical solution of 

f f i(r){(exp[-flUo(reolco2)] ) - (exp(--flUnE)) } d r = 0  (11) 

Here f l= 1/kT and ))(r) is the background correlation function of the 
reference fluid [9, 10, 13]. The angle brackets represent coi and c%. The 
first-order term, A l, can be obtained from 

A1 = ~-~ p f (Ul(rcolOo2)exp[-~Uo(rO9~co2)]))~(r) dr (12) 

Here we have used only the first-order perturbation expansion. 
Recently, there has been some interest in using angle-averaged poten- 

tials [15-18] for predicting thermodynamic properties of fluids modeled 
with anisotropic potentials. Of special interest is the idea of MacGowan 
[19] and here we have followed similarly. In our case we divide the poten- 
tial according to a Barker-Henderson-type split [20] in a manner similar 
to that of Mo and Gubbins [14] 

Uo(rColo~2)= U(rO)lC~2), if U(r~ole~2)>0 
(13) 

= O, otherwise 

and 

Ul(ro)lco2)= U(rcolco2) , if U(rcolo2)<O 
(14) 

= 0, otherwise 



Computer Simulation of Fluids 785 

This type of split is chosen since it applies to polar molecules also. These 
two parts are separately sphericalized using a Boltzmann angle-averaging 
procedure and then recombined such that 

exp(-fl<b) = (exp[-flUo(rColco2)]). (exp[-/~U,(rco,co2)])  (15) 

Thermodynamic properties of the fluid modeled by the sphericalized poten- 
tial, ~b, can then be easily obtained [15-19] and we have used a simplified 
form of Fischer's theory [13] for this purpose. We note that this form of 
the sphericalized potential is temperature dependent. 

Systematic molecular dynamics simulations have been performed to 
obtain the residual Helmholtz free energy and these are compared with the 
predictions from perturbation theory and the sphericalized potential 
method for the GOCE model with ~c =0.50, 1.30, and 1.55 [9]. Figure 1 
shows one such comparison for the case of ~c = 0.50. The two methods are 
in qualitative agreement with simulation, with the deviations getting larger 
with increasing density or decreasing temperature. The sphericalized poten- 
tial method is slightly better than perturbation theory at higher densities 
and lower temperatures. Similar behavior has also been found for  other 
molecular shapes [9]. A comparison of the pressure shows the 
sphericalized potential method to be better than perturbation theory, 
however, both these methods underpredict the potential energy when com- 
pared with simulation [9]. We note that our observations are similar to 
those Monson and Gubbins [2] for the original potential of Berne and 
Pechukas [4]. 

We have performed simulations using the reference potential of Eq. (8) 
for the GOCE model. This allows us to obtain directly A0 and A 1 in the 

0 . 0  

- I . 0  

- 2 . 0  

o 5 , 

�9 M0 
- -  PT  

. . . .  SPM . . . .  

K=  0 .50  " �9 

o!, o'+ ,'2 ,16 20 
p~ 

Fig. 1. Comparison of the residual Helmholtz free energy, 
A/NkT, from molecular dynamics (MD), perturbation 
theory (PT), and the sphericalized potential method 
(SPM) for the GOCE potential with ~c = 0.50. 
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perturbation expansion [Eq. (10)] and these terms have been compared 
with those obtained from perturbation theory [9]. It is found that Ao from 
perturbation theory compares well with that from simulation and pertur- 
bation theory significantly underpredicts the first-order term A I. These 
calculations also show that the first-order expansion (10) itself is a good 
approximation for the GOCE model and our calculations of A1 are not 
sufficiently accurate [9]. 

Similar studies have also been performed for the GOBG potential with 
dw= 1.0 and ~=0.50 and 1.55 [-10]. Figure 2 shows a comparison of the 
residual Helmholtz free energy from simulation, perturbation theory, and 
the sphericalized potential method. The improvement in comparison with 
Fig. 1 for both these methods is significant, especially, for perturbation 
theory. This is also observed for the case of ~ = 1.55 [10]. As expected, 
these methods compare well with simulation for pressure and internal 
energy and also with perturbation theory slightly better than the 
sphericalized potential method [10]. Table I shows one such comparison 
for the potential energy. 

Simulations using the reference potential have also been performed for 
the GOBG model and these show A 0 and A1 from perturbation theory to 
be in good agreement with simulation for this case [-10]. The 
improvements in the comparison of perturbation theory and the 
sphericalized potential method with simulation for the GOBG potential 
over the GOCE model is certainly interesting and we consider this to be 
due mainly to the use of Eq. (6), which makes the GOBG potential closer 
to the site-site models for which such methods are already known to 
work [1]. 
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Same as Fig. 1 for the G O B G  potential with 
K = 0.50 and dw = 1.0. 
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Table I. A Comparison of the Potential Energy from Molecular Dynamics Using the Full 
Gaussian Overlap Pair Potential (MD--Ful l )  and the Nonspherical Reference Potential 

(MD--Ref)  with Results from Perturbation Theory (PT) and the Sphericalized Potential 

Method (SPM) for the GOBG Potential (From Ref. 10) 

U/N% 

p* T* PT MD--Ref  MD--Ful l  SPM 

0.50 1.20 3.00 -7 .64  -7.55 -7.59 --7.29 
2.00 -8 .17 -8 .06 -8.13 -7 .92 

1.50 3.00 --9.03 -8 .86 -8.98 -8.71 
2.00 - 9.79 - 9.88 - 9.78 - 9.65 

1.55 0.30 1.75 - 1.59 - 1.68 - 1.55 
1.00 - 1.83 - 1.89 - 1.72 

0.50 135 - 2.54 -- 2.65 - 2,50 
1.00 -3.19 -3 .15 -2.95 

i 

4. SIMULATION A N D  EXPERIMENT 

Previous studies [ 8 ]  indicate that the GOBG potential can be used to 
model liquid benzene, at least for a small range of temperatures, and we 
have performed such a study on a much wider scale and also included the 
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Fig. 3. Comparison of the potential energy 
of orthobaric liquid benzene from experiment 
and simulation using the modified Gaussian 
overlap potential, with ( G O B G + Q Q )  and 
without (GOBG) the quadrupole moment. 
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effect of the quadrupole moment. Through systematic NVT simulations, we 
have obtained zero-pressure liquid densities and potential energies as 
functions of the temperature for the COBG fluid with x=0.50 and 
dw = 0.58. For the quadrupolar fluid we used Q*=  -0.378 based upon the 
experimental quadrupole moment [1 ] and estimated So and ao [1 t ]. 

From comparisons of these zero-pressure simulation results with the 
experimental orthobaric liquid curves we have obtained not only the poten- 
tial parameters (eo/~C=483K for GOBG and %/~c=417K for the 
GOBG + QQ and a0 = 6.39~ for both) but also an idea of how well this 
potential can model liquid benzene. Figure 3 shows such a comparison for 
the potential energy. Both the GOBG and the G O B G + Q Q  models 
predict well the orthobaric potential energy of liquid benzene, with the 
quadrupolar potential being slightly better. Figure 4 shows a similar com- 
parison for orthobaric liquid density and here the quadrupolar potential is 
clearly superior. Figure 5 shows a similar comparison for the second virial 
coefficient also; there the quadrupolar potential is slightly better. We have 
also modeled liquid benzene using a six-site potential, with and without the 
quadrupole moment, and found the COBG potential to be comparable to 
the six-site potential [ 11 ]. 

The above comparison clearly shows that the Gaussian overlap poten- 
tial can be used to model real fluids and other systems should be explored. 
Also, we have so far used only the Lennard-Jones-type expressions such as 
Eqs. (1) and (6), and other models should also be considered for this 
purpose. For the present, we are modeling naphthalene as a dumbbell of 
two oblate ellipsoids using the GOBG potential and the preliminary results 
are encouraging. The possibility also exists for simulating fluid mixtures. 
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Fig. 4. Same as Fig. 3 for the density. 
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Fig. 5. Comparison of the experimental 
second virial coefficient for benzene with 
predictions using the GOBG and 
GOBG + QQ potentials. 
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